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Abstract
Q

Results are presented from a study of charged particle scattering about a charged
wire in an ionospheric plasma. The one dimensional case assumes an infinite wire in an
unmagnetized plasma with finite and equal ion and electron temperatures. Because
particle energy and angular momentum are conserved in such a formulation, the results
have the potential to provide a standard against which to compare more complicated
electrodynamic tether simulations. Results indicate that higher plasma shielding limits the
range of impact parameters that experience significant scattering, and that attracted
particles entering tangent to the sheath experience increased scattering. The results also
show that there are significant changes in orbital trajectories between different space
charges within the OML limit.

1. Introduction
Current plasma models employ complicated codes for analyzing plasma

characteristics as realistically as possible, taking into account many factors such as
particle collisions, multiple sheaths, trapped particles, interacting magnetic fields, etc. As
a result of so many variables, a new model needs to be tested against a standard or
"classical" theory to verify the results. Of course comparison with experiment is the
ultimate validation, but in many cases and end to end comparison does not provide as
much insight into phenomenon and errors as code to code verification. Generally, a
suitable classical model is one that involves minimal assumptions, many conserved
quantities, a high degree of analyticity, and of course community acceptance.

This paper seeks to provide a classical plasma sheath model for particle scattering
for the case of an infinitely long charged wire immersed in an unmagnetized plasma with
finite plasma temperature. Under these conditions, charged particles will orbit the wire
conserving both energy and angular momentum. This allows us to compute the self-
consistent space charge sheath using the Turning Point Method [1 ], and then numerically
compute the scattering of particles in the electric field of the wire. Although the
scattering must be computed numerically for the general case, the conserved elements of
the orbit allow this to be done in semi-analytic one dimensional integral. In the case of a
r-1 potential we can compare our results to the fully analytic answer.

The Turning Point Method, or TPM, was developed by Parker [ I] and provides a
self-consistent solution when calculating the characteristics of a collilsionless, isotropic
and stationary plasma in the presence of a probe with a large radius compared to the
plasma debye length. Using the TPM to analyze a plasma provides an advantage over
other plasma theories in several ways. By being able to identify the point where a particle
turns in its orbit, the entire trajectory of the particle can be traced to and from infinity
without having to know any other information about the particle's orbit. This provides a
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much simpler alternative to the computationally intensive particle-in-cell (PIC) weighting
method, which must perform individual calculations along the entire trajectory of the
particle. The TPM is also easier to develop into a computer program than Laframboise's
earlier Effective Potential Method [2], which is equivalent to the TPM. The TPM also
provides a straightforward method for determining the turning angle of a particle along
its orbit.

This paper will specifically look at the case of a charged particle either attracted
or repelled to a charged cylindrical probe by using a Fortran code originally developed by
Cooke [3]. The original program, called TurningPoint, used Fortran 77 to model the
characteristics of a particle that could either be attracted to or repelled by a spherical
probe using the TPM. In this effort, the code was expanded to include the analysis of a
plasma using cylindrical probe geometry, as well as an added subroutine that finds the
turning angle of the charged particle (repelled or attracted) around the probe.

2. Background
The goal of a probe theory is to determine the charge density, particle flux, and

the electrical potential about the probe. To find the current density and potential, two
governing equations are used - the Vlasov equation and Poisson's equation. Poisson's
equation states

Vol2=_plC(, - , p=e(n,-n,) (1)kT

where 4) is the plasma potential, p is the net particle density, co is the permittivity of

space, e is the particle charge, 4 is the particle voltage, k is the Boltzmann constant, T is
the particle temperature, ni is the ion density and ne is the electron density. The time-
independent form of Vlasov's equation is given as

V ,f+ +eVrO.V,f =0 (2)

where V, and V, denote the gradient operator with respect to position and velocity space,
andf and m are the velocity distribution and the mass of the particle, respectively. In this
analysis we assume the velocity distribution,f, to be Maxwellian for both electrons and
ions. With the proper boundary conditions, it is possible to manipulate Vlasov's equation
in order to solve for the particle density, known as the "Vlasov Problem"; conversely,
Poisson's equation can be solved to yield the electrical potential given a constant particle
density, known as the "Poisson Problem". By solving the Vlasov Problem and the
Poisson Problem simultaneously on a set of grid points, the particle (and therefore
current) density and the plasma potential can be determined.

2.1. The Vlasov Problem
Solving the Vlasov Problem requires solving the Vlasov equation for a set of

boundary conditions that classifies the particle orbits into whether or not they contribute
to the current density measured by the probe. The current density is defined as the first
moment of the Vlasov equation:



I(fi) = ffJf(k,V)Vd PV (3)

where p is 2 for a cylindrical probe and 3 for a spherical probe. Assuming a Maxwellian
velocity distribution, expressing the current density for a cylindrical probe in a
dimensionless form, i, yields

idsi =0) (4)

T f exp(-v 2 - O)v 2dv fd(sin 0).

Here, 0 and v are dimensionless quantity defined as O = (kT/e) and v = VI(2kT/m)".2. The

evaluation of the current density can be simplified by transforming the integration of n
over v and 0 into integration over the constants of motion, E and J2, where E is the total
energy of the particle and J2 is the square of the angular momentum. Using E and J2 is
advantageous because these variables remain constant throughout the entirety of the
particle's orbit, regardless of changes in r along that orbit. The constants of motion in
dimensionless form are

E=v2 + ; j 2 =r 2v2 sin 2 0  (5)

Transformation of the current density using E and J2 yields

2exp(O .. exp(-E)dE.M, (E). (6)

0.,o,, is the potential at the source, which is 0- for ambient particles and zero otherwise
[4]. Mi, is the "monoenergetic" contribution to i for a cylindrical probe, defined as

M/ () = fgd(Jr2 (7)

where E is held constant and the integrals are evaluated over j 2. The factor C represents a
differentiation between ambient and emitted particles, where C is unity for ambient

particles and 2 for emitted particles. The factor 5 gives orbit information pertaining to
what source an orbit will connect with. Thus, for ambient particles, 8=1 if the particle

comes from infinity and --0 if it comes from the probe surface. Similarly, for emitted

particles 8--0 if the particle comes from infinity and 8=1 if it comes from the surface.
Simply put, a nonzero value for 8 means that an orbit is "occupied". Evaluating Mi,
requires that the boundary conditions for the integral be determined, which can be done

by defining specifically which particles have an angular momentum that contribute to the
collected probe current and which do not. This is where the TPM becomes useful.



The TPM defines a turning point as the point where the radial velocity component
Vr = 0. Consequently, a particle will not vanish or change sign (i.e. a particle will exist) as
long as

E O -- (8)

r
2

or

j2 < g =_r 2 (E-0) (9)

In the above equation, g is defined as the turning-point function. When g is plotted in the
(J2, r) plane, all physically possible orbits exit below the turning-point function curve.

In a collisionless plasma, there are four types of orbits can exist (illustrated in
Figure 1):

4/

Figure 1: The 4 types of orbits

Type i: Orbits that include ambient particles that pass from infinity to the sphere, or
emitted particles that pass from the sphere to infinity. These orbits have no turning point

and 8 = i.

Type 2: Orbits that include ambient particles that pass from infinity by the probe at a
minimum radius without intersecting the probe surface, and back out to infinity again.

These particles have one turning point and a delta factor of 8 = 2 to account for the
ingoing and outgoing trajectory contributions of the particle.

Type 3: Orbits that comprise of particles emitted from the surface of the probe that travel
out to a maximum radius and then return back to the probe surface. Particles in type 3

orbits have one turning point and a delta factor of 8 = 2 to account for the ingoing and

outgoing trajectory of the particle.



Type 4: Closed or "trapped" orbits where particles circle the probe indefinitely without
making contact with the surface. These orbits are assumed to be unpopulated in
collisionless plasmas and therefore 6 = 0 for them.

From analysis of the orbit types, it is evident that type-I and type-2 orbits can
contribute to the collected probe current simultaneously, and type- I and type-3 orbits can
contribute simultaneously, but type-2 and type-3 orbits cannot contribute simultaneously.
Also, there will always be contributions by type-I orbits between the lowest value ofj 2

and j2 = 0. Hence, there can be orbits populated by either type-2 or type-3 orbits above
the minimum J2.

When the turning-point function, g, is plotted in the (j 2,r) plane, the least-values
of g can be analyzed in relation to the radial position, r, at where they occur. Here, three
cases are considered that encompass the relevant scenarios: case A - the least value of
g(r) (known as the "absorption radius") occurs inside of the probe radius, rp. case B - the
least value of g(r) occurs outside of rp, and case C - there is a least value of g(r) inside of
rp and a secondary least-value outside of rp. The three cases are illustrated in Figure 2.
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In case A, the least value of g occurs at point a, and corresponds to the least value
of j2 = jJ2. Only type- I orbits exist between J2 = 0 and j2 = jJ2 and, since type-2 orbits are
outside of the absorption radius and type-3 orbits are inside the absorption radius, we
have

Case A: For r(l,a), J , =0, Al B = AJ3= 2 , J 3 = g(r) -4 no type-2 orbits
For r(a,oo), JA =0 J2 = 0, JJz = g(r) - no type-3 orbits

Case A is the only case that we will analyze for the purposes of this paper. From this
analysis, it is possible to define Mi, for ambient or surface-emitted particles for a
cylindrical probe. The analysis is done in Parker [4] with the results as follows:

M,, (E) 9d- (J12 == J, (10)

In this case, r = I since the current density of interest is that collected at the probe
surface.

To finish solving the Vlasov Problem, the integral over energy in equation (6),
with Mi, defined in equation (10), must be numerically evaluated using a quadrature
formula in the form

K

fexp(-E)dE.M (E) = ZCk.M(Ek) (I1)
k=1

where Ck is a constant that varies with the energy Ek from k = 1,2,...,K. Ck and Ek are
evaluated by establishing a least value and greatest value of the potential distribution,
E,,,i and E,,,. The integral can now be split up into two parts, one in the finite range of
(E,i, E,,,) and one in the semi-infinite range of (E,, , ):

FF. exp(-E)dE.M(E) "exp(-E)dE.M(E)+ f exp(-E)dE.M(E) (12)

The finite range consists of type-3 and type-4 orbits, where the potential dips into the
negative range along the orbit as the particle changes trajectory around the probe.
Consequently, when only considering type-I and type-2 orbits (or only case A scenarios),
Emji = E,,,,, and only the semi-infinite range applies.

For the Maxwellian case where the integrand contains a Gaussian function as a
weighted function, the coefficients Ck and Ek can be transformed into an abscissa-
coefficient pair defined from the data of Steen et al., and the semi-infinite range integral
becomes

. exp(-E)dE.M (E) = exp(-Emd,n) exp(-U)dU.M (U + E.,)



A'

K

=L2H,akoM(a2 + E,) (13)
k=1

Here, Ck = 2Hkak and Ek = a 2k + E,, .. where Hk and ak are the abscissa-coefficient pair
defined in Steen et al.

This completes the solution to the Vlasov Problem. Next, the much simpler
Poisson Problem will be solved.

2.2. The Poisson Problem

Poisson's equation, given earlier as equation (I), can be rewritten in dimensionless form
using the dimensionless terms described earlier plus ;., which is the ambient-electron

Debye length, t), divided by ro (the "Debye number"). For a cylinder, Poisson's equation
may be transformed to

d____ L. (,,°- n,) (14)

du2  2m

In the cylindrical case, u = In r. Through the transformation of Poisson's equation, it is
possible to solve for the electrical potential and obtain a result that is easily analyzed
through computational means:

- 2 + 1= (Au.)2 T nJ (15)

Ar and Au are the interval lengths on a uniform grid, and i andj denote the grid point of
immediate analysis.

2.3. Turning Angle Calculations
It is desirable to express the equation of the orbit of a particle in terms of r and 0

while eliminating the time dependence, with E and J as constants of integration. In a
central force problem (where the only two forces interacting with each other are the
particle and the probe), the orbit is symmetrical about the turning points, meaning that if
any two turning points are known, the complete orbit of the particle can be traced [5].
The classical equation of motion for angular momentum states that

I = mr 20 (16)

where I is the angular momentum with dimensions. Equation (16) can be rewritten as

dO= idt (17)
mr

Since conservation of energy states that



E m(i2 +r 2 )+V(r) (18)

and assuming that E is a constant of motion, we can solve for dt and combining it with dO
to eliminate t from the solution for a time-independent result for d&

dO = 1dr (19)72 (2

mr
2

When equation (19) is transformed into units used by Parker and the Turning Point
formulation, the result is

dO - dr (20)
rg ( r)

For the specific case when 4 (R) = )pri IR, an analytical answer for d0is

available. In Parker notation, it is

2J

dO = -a cos rob (21)

+ 4 2

By definition, the TPM identifies the position at which a particle of a certain
energy will turn in a potential field. A particle with an angular momentum of J2 (held
constant throughout the particle's orbit) will turn at a radius r when it intersects with the
turning function (below the curve), g, and proceed back out to infinity along a trajectory
symmetrical to its incoming path. Therefore, the TPM can calculate the turning angle of a

particle by computing the dOs at each grid point out to infinity (effectively the end of the

grid) and adding them together to form one 0 value for each g function value. A 0is

interpreted according to the following geometry for attracted and repelled particles:



Atracted Particle TraJectories

amfkk b**_CtDrY Repelled Particle Trajectories

By examining the geometry of the problem it is clear that, for an attracted particle

trajectory, the turning angle 0 will approach 360' as the impact parameter b decreases,

and approach 1 800 as the impact parameter reaches infinity. The repelled particle

trajectories do the opposite - 0 approach 00 as b decreases and converges to 1800 as b

goes to infinity.

3.0. Computational Applications of the Turning Point Formulation
Obtaining a numerical solution for the particle density, current density and

electrical potential of a plasma requires simultaneously solving Vlasov's and Poisson's
equations through the solution of two sub-problems, the Vlasov Problem and the Poisson

Problem. The easiest way to solve the two sub-problems is using an iterative procedure
on a computer, consisting of developing a certain amount of radial grid points extending
from the surface of the probe to an approximation of infinity, which is what TurningPoint
does. At each grid point, the Vlasov Problem is solved to yield the particle density, while
the Poisson Problem is solved at the same time to yield the electrical potential to produce
mutually consistent solutions. For this paper, the TurningPoint program was expanded to
include plasma analysis using a cylindrical probe as well as a spherical probe.
Specifically, in-depth analysis was done for cylindrical current collection probes. The
program modifications consisted of adding "IF' statements that differentiated between
spherical and cylindrical probe collection models based on the initial user input,
according to the cylindrical current collection and monoenergetic energy definitions
described earlier.

The TurningPoint program was also expanded to calculate the trajectory of the
particle in question around either an attracting or repelling probe of cylindrical or
spherical geometry by calculating the turning angle of the particle from its turning point
out to the end of the grid, or an approximation of infinity. A separate subroutine, called



turn_angle, was added to the end of TurningPoint that numerically calculates the turning
angle of the particle at each grid point using the electric potential field of the probe
defined earlier in the TurningPoint program.

4.0. Conclusions and Results
Several particle trajectories were defined for different amounts of space

charge (or debye length, XD), for both attracting and repelling particles in a cylindrical
and spherical probe sheath. For a probe voltage held at +100 Volts, the turning angle for

various attracted and repelled particles of ±100 Volts for varying amounts of space

charge are shown in Figure 3. As expected, Figure 3 shows the repelled particles coming

towards the probe from infinity, where their turning angle is 1800, and being increasingly

repelled from the probe as they approach. At a close enough impact parameter, the
particles are repelled completely and cannot reach the probe. Figure 5 illustrates that a
+10 Volt particle approaching a +100 Volt probe cannot even penetrate the probe sheath
until it reaches an impact parameter of - 4 *Rprobe, at a probe radius of - 27*Rp,,b.

An attracted particle coming into the probe from infinity will fall into the probe

and approach 360' . Figures 3 and 5 illustrate an interesting phenomenon as the particle

first enters the probe sheath - the deflection angle initially jumps up, suggesting that the

particle gains A as it transverses across the contours of the probe sheath and then slopes

down as the impact parameter decreases and the particle avoids the sheath irregularities.
The effect is more striking as the space charge of the plasma increases and the probe
sheath radius decreases.

Figure 4 shows the expected result that at lower space charges (high X1)), the

potential profile approaches a l/r characteristic, while at higher space charges (low XD)

the potential profile approaches a log(r) characteristic. This behavior makes it possible to

test for consistency of the numerical results by testing the analytical solution for A0

when the potential profile is forced to be (r) = prI 'R, equation (21). The results,

shown in Figure 7, illustrate what the turning angle of a particle of varying energies in a
plasma of high space charge would be in the absence of a sheath. Figure 4 also includes

the potential profile of a probe with XD/Rpr,,b of less than 1.0, the OML limit for a

cylindrical probe. It is of interest to note that, even though the probe analysis dealt with
space charges within the OML limit, significant changes in orbital trajectories between
different space charges were still observed.

Result so far support the common sense expectation that higher plasma shielding

(low X1 JR) limits the range of impact parameters that experience significant scattering.

Because the analysis of orbital trajectories does not yield information about the intensity
of the incoming particles, a discussion about the total scattering cross-section of the
particles is not possible. However, the first moment of the orbital trajectories can be

calculated, as , = (0)-r,,, , providing a somewhat arbitrary number that reflects the

quantity of particles that will be deflected to some degree by probe. Table I illustrates the



result that higher plasma shielding limits the range of impact parameters that experience
significant scattering.

X 1 rlwir,, A ttracted, A_ ,... R epelled, . .

(radians *R/R,,,,rI) (radian s* RlRpr,,bw)

35.6 40.6

3 144.4 159.9

5 264.6 294.3

10 431.1 510.)

30 571.2 7)8.5

Table 1: Turning Moment, V,, = 100V
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Figure 3: Turning Angle vs Impact Parameter for Attracted and Repelled Particles
where V, = +100 Volts and V,,,, = ±100 Volts
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